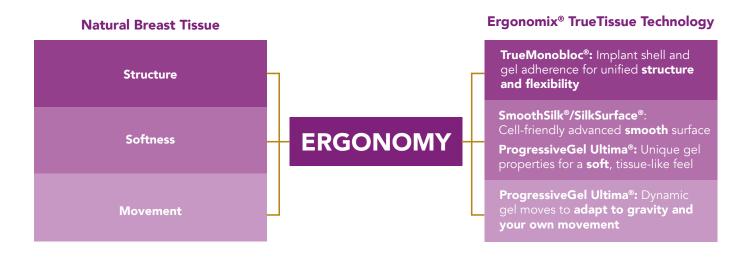
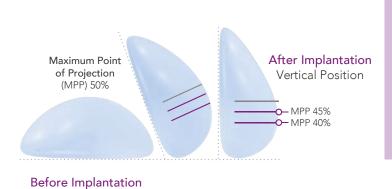


Motiva Ergonomix®

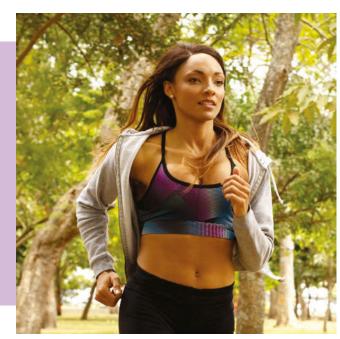


Designed for the look, feel, and movement of a natural breast

motiva.health

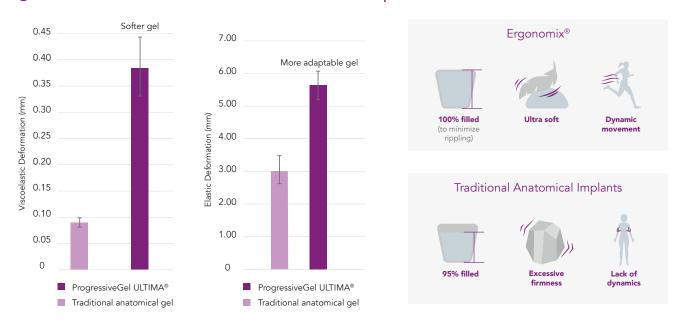

The world's first and only ergonomic implant

As its name implies, Ergonomix® is an ergonomic or dynamic advanced smooth implant designed to mimic the look, feel, and movement of natural breast tissue.



Motiva Ergonomix® delivers a more natural-looking breast

ProgressiveGel Ultima® allows Ergonomix® to hold the desired silhouette of traditional anatomical implants (holding a teardrop shape when standing) while providing more softness and response to movement and gravity (becoming round when lying down) like a natural breast.


Horizontal Position

Better cross-linking, structure, chemical composition and enhanced mechanical properties lead to a softer, more adaptable implant.

ProgressiveGel Ultima® is a softer and more adaptable gel compared to gels in traditional anatomical implants that have a form-stable (i.e. fixed) shape, thus providing more softness and response to movement and gravity like a natural breast.

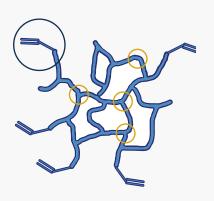
Ergonomix® vs. Traditional Anatomical Implants

Establishment Labs TS-17-036 Rheology Testing of Breast Implant Gels with the BTC-2000™ (Equipment: Biomechanical Tissue Characterization BTC-2000™)

Motiva® TrueTissue Technology

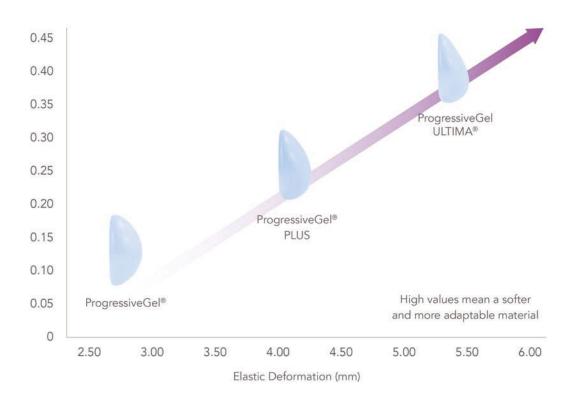
A patented system for breast implant surgery comprised of:

1. TrueMonobloc® with unique shell-gel interphase for strength and flexibility


- Flexible, multilayer system links all shell components for a unified, flexible structure
- Easy insertion through smaller incisions due to shell elasticity and adaptable gel properties
- Improved mechanical properties and durability under stress
- Outstanding safety profile1-4

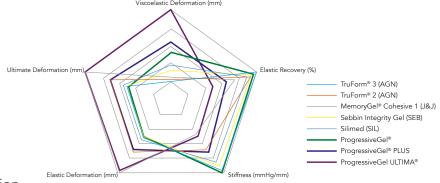
2. Optimal, **highly adherent shell-gel interphase** for a unified, stronger structure and better performance

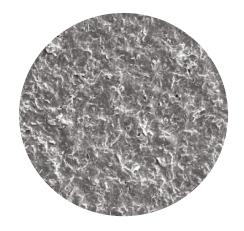
Older Generation Silicone Polymer Network Pendant Vinyl


ProgressiveGel ULTIMA® Silicone Polymer Network Terminal Vinyl

Previous generations of gels have vinyl groups in the middle of the silicone chains⁵ (pendant type). In ProgressiveGel ULTIMA[®], the vinyl groups are at the ends of the chains⁶ (terminal vinyl), which make them more reactive than pendant vinyl groups, thereby increasing the adhesion between the shell and the gel.

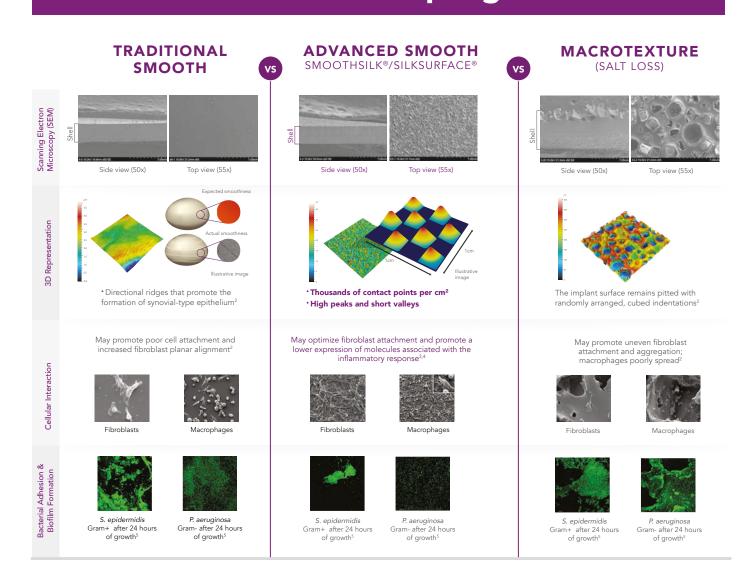
3. ProgressiveGel ULTIMA®: Unique Rheology


The highest elastic and viscoelastic deformation values translate into a softer and more adaptable gel.


Superior Mechanical& Rheological Performance

Compared to other implants on the market, Ergonomix with ProgressiveGel Ultima® offers superior mechanical and rheological performance due to its:

- Resistance to gel fracture
- · Soft gel
- Shape memory
- · Superior cohesive strength
- High elasticity
- Low viscosity
- · Optimal shell-to-gel interphase adhesion
- Enhanced viscoelastic properties



4. SmoothSilk®/SilkSurface®: A Bioengineered, Cell-Friendly Surface

- · Less chronic inflammation, bacterial adhesion, friction
- Reduced risk of biofilm, seroma, double capsule, capsular contracture and potentially BIA-ALCL^{1-4,7,8}
- · No tissue ingrowth
- Soft, thin capsule formation around the implant maintains breast softness over time

Controlled surface topography designed for fibroblast and macrophage attachment

Adapting surgical technique for Ergonomix® implants

Surgical techniques need to be adjusted when using implants that do not promote tissue ingrowth. Ergonomix® implants are not hard devices that adhere to the chest, but are dynamic ones that naturally stretch the skin and expand the lower pole.

SURGICAL PLANNING

Use a conservative approach to minimize IMF disruption whenever possible

- · The ProgressiveGel ULTIMA® and TrueMonobloc® technology make insertion through a small incision easier?
- · Precise and tight pocket dissection is essential. The healthy capsule that develops cannot be relied upon to restrict implant movement
- · Avoid disrupting the ligamentary suspension of this important anatomical structure⁴

PRECISE POCKET DISSECTION

Match the exact base diameter of the implant to the pocket

- · When using the subglandular or subfascial pocket, the horizontal measurements of the pocket should closely match the implant base, even if this means a very conservative lateral dissection
- \cdot Achieve precise lateral control of the subpectoral pocket by first dissecting medially and then laterally
- · To prevent lateralization, avoid excessive lateral dissection to preserve supportive tissue (muscle or fascia) throughout the entire lateral border of the pocket

IMF FIXATION

Support tissues and secure implant position

Make sure the Scarpa's fascia is secured to the deeper layers to prevent inferior migration of the implant. Various techniques may be used to incorporate sutures into wound closure.

Choose wisely!

Higher breast implant profiles and volumes will have more mass projected towards the front, reducing the implant's support, particularly in less resilient breasts and lax capsules.¹⁰

Reducing the implant's projection and creating a tight pocket will help prevent implants from flipping.¹¹ Planning with 3D imaging technology can also be helpful.

POST-OPERATIVE CARE & SUPPORT

Patients must minimize implant movement during the early post-operative period to maintain the dissected pocket boundaries.⁹

Surgeons should recommend support garments at their discretion. Supportive bras are highly recommended during exercise.

Avoid massaging to minimize tissue stretching and implant displacement. Educate patients on the importance of post-operative care.

Wide variety of shapes and sizes to suit different patient needs

Motiva Ergonomix®																							
	MINI						DEMI 🔵				FULL					CORSÉ 🔵							
Catalogue #	(cm)	D (cm)	Dr (cm) 40%	Dr (cm) 45%	V (cc)	Catalogue #	(cm)	D (cm)	Dr (cm) 40%	Dr (cm) 45%	V(cc)	Catalogue #	Ocm)	D (cm)	Dr (cm) 40%	Dr (cm) 45%	V (cc)	Catalogue #	(cm)	D (cm)	Dr (cm) 40%	Dr (cm)	V (cc)
ERSM-105Q	8.5	2.2	4.0	4.5	105	ERSD-135Q	8.5	3.1	4.5	5.1	135	ERSF-145Q	8.5	3.5	4.8	5.4	145	ERSC-180Q	8.5	4.0	5.2	5.8	180
ERSM-125Q	9		4.2	4.7	125	ERSD-155Q	9		4.8	5.4	155	ERSF-175Q	9			5.7	175	ERSC-210Q	9				210
ERSM-140Q	9.5	2.4	4.4	5.0	140	ERSD-180Q	9.5	3.4	5.0	5.6	180	ERSF-205Q	9.5		5.3	6.0	205	ERSC-240Q	9.5				240
ERSM-150Q	9.75	2.4	4.5	5.1	150	ERSD-190Q	9.75	3.4	5.1	5.7	190	ERSF-220Q	9.75	4.0	5.5	6.2	220	ERSC-260Q	9.75	4.6	5.9	6.7	260
ERSM-160Q	10	2.5	4.6	5.2	160	ERSD-205Q	10	3.5	5.2	5.9	205	ERSF-235Q	10		5.6	6.3	235	ERSC-280Q	10		6.2	6.9	280
ERSM-170Q	10.25	2.5	4.7	5.3	170	ERSD-215Q	10.25	3.5	5.3	6.0	215	ERSF-255Q	10.25		5.8	6.5	255	ERSC-300Q	10.25				300
ERSM-185Q	10.5	2.6	4.9	5.5	185	ERSD-230Q	10.5	3.6	5.4	6.1	230	ERSF-275Q	10.5			6.6	275	ERSC-325Q	10.5				325
ERSM-205Q	10.75	2.6	5.0	5.6	205	ERSD-245Q	10.75	3.7	5.6	6.3	245	ERSF-295Q	10.75		6.0	6.8	295	ERSC-350Q	10.75				350
ERSM-220Q	11			5.7	220	ERSD-265Q	11	3.8	5.7	6.4	265	ERSF-315Q	11		6.2	7.0	315	ERSC-380Q	11				380
ERSM-230Q	11.25		5.2	5.8	230	ERSD-285Q	11.25	3.8	5.8	6.5	285	ERSF-335Q	11.25	4.6			335	ERSC-410Q	11.25				410
ERSM-245Q	11.5	2.8	5.3	6.0	245	ERSD-300Q	11.5		5.9	6.7	300	ERSF-355Q	11.5		6.5		355	ERSC-440Q	11.5				440
ERSM-260Q	11.75	2.8	5.4	6.1	260	ERSD-320Q	11.75		6.0	6.7	320	ERSF-375Q	11.75	4.8	6.6	7.4	375	ERSC-475Q	11.75				475
ERSM-275Q	12	2.9	5.5	6.2	275	ERSD-340Q	12	4.0		6.9	340	ERSF-400Q	12			7.6	400	ERSC-510Q	12			8.5	510
ERSM-290Q	12.25	2.9	5.6	6.3	290	ERSD-360Q	12.25	4.0	6.2	7.0	360	ERSF-425Q	12.25		6.9		425	ERSC-550Q	12.25				550
ERSM-310Q	12.5		5.7	6.5	310	ERSD-380Q	12.5		6.3		380	ERSF-450Q	12.5			7.9	450	ERSC-590Q	12.5			8.9	590
ERSM-360Q	13		6.0	6.7	360	ERSD-425Q	13		6.6	7.5	425	ERSF-500Q	13			8.2	500	ERSC-650Q	13				650*
ERSM-400Q	13.5	3.2	6.2	7.0	400	ERSD-475Q	13.5	4.4	6.8	7.7	475	ERSF-550Q	13.5			8.5	550	ERSC-725Q	13.5				725*
ERSM-430Q	14		6.4	7.2	430	ERSD-525Q	14	4.5	7.0	7.9	525	ERSF-625Q	14		7.8	8.8	625	ERSC-825Q	14				825*
ERSM-475Q	14.5	3.4	6.6	7.5	475	ERSD-575Q	14.5	4.6	7.3	8.2	575	ERSF-700Q	14.5				700	ERSC-925Q	14.5				925*
ERSM-525Q	15	3.5	6.9	7.7	525	ERSD-625Q	15	4.8	7.5	8.5	625	ERSF-775Q	15	6.1	8.4	9.4	775	ERSC-1050Q	15	7.8	9.7	10.9	1050*
	A=Base B=Projection C=Arc length V=Volume. * Special Order																						

Approximate arc length measurements based on clinical model

Ergonomix® with QiD®														
Mini	Demi	Full	Corsé	ProgressiveGel ULTIMA®	BluSeal®	Single Pack	TwinPack	Sizers	Q Inside®	5Y Extended Warranty**				
Ø	Ø			Ø					②	•				

All implants are available to order without Q Inside® by omitting the Q at the end of the catalogue # Available by special order with VelvetSurface® by replacing the 3rd letter in the catalogue # with the letter V **Optional

Contact your local Motiva® product specialist for more information.

1. Sforza M, Zaccheddu R, Alleruzzo A et al. Preliminary 3-year evaluation of experience with SilkSurface and VelvetSurface Motiva silicone breast implants: a single-center experience with 5813 consecutive breast augmentation cases. Aesthet Surg J. 2018; 38(Suppl 2):S62-S73. 2. Chacón M, Chacón M & Fassero J. Six-Year prospective outcomes of primary breast augmentation with nano-surface Implants. Aesthet Surg J. Nov 2018. 3. Sim HB. Revisiting Prepectoral Breast Augmentation: Indications and Refinements. Aesthet Surg J. 2019 Apr 8;39(5):NP113-NP122. 4. Huemer GM, Wenny R, Aitzetmüller MM, Duscher D. Motiva Ergonomix Round SilkSurface Silicone Breast Implants: Outcome Analysis of 100 Primary Breast Augmentations over 3 Years and Technical Considerations. Plast Reconstr Surg. 2018; 141(6):831e-842e. 5. Keizers P et al. RIVM report 2015-0100. Silicone breast implants in the Netherlands. A market surveillance study. Bilthoven, 2016: 25. Available at: https://www.rivm.nl/bibliotheek/rapporten/2015-0100.pdf < https://www.rivm.nl/bibliotheek/rapporten/2015-0100.pdf > . Last accessed October 23, 2019. 6. Formes A, Diehl B. Investigation of the silicone structure in breast implants using 1H NMR. Journal of Pharmaceutical and Biomedical Analysis. May 2014;93:95-101. 7. James GA, Boegli, L, Hancock J, Bowersock L, Parker A, Kinney BM. Bacterial Adhesion and Biofilm Formation on Textured Breast Implant Shell Materials. Aesth Plast Surg. 2019 Apr; 43:490–497. 8. Jones P, Mempin M, Hu H, et al. The functional influence of breast implant outer shell morphology on bacterial attachment and growth. Plast Reconstr Surg. 2018;142(4):837-849. 9. Sforza M, Hammond DC, Botti G et al. Expert Consensus on the Use of a New Bioengineered, Cell-Friendly, Smooth Surface Breast Implant. Aesth Surg. J. 2019 May, 39(3):S95-S102. 10. Salinero Arquero P, Zanata FC, Masako Ferreira L, Xerfan Nahas F. Capsular Weakness around Breast Implant: A Non-Recognized Complication. World J Plast Surg. 2015; 4(2): 168–174. 11. Khan UD. Back-to-Front Flipping of Implants Following Augmentation Mammoplasty and the Role of Physical Characteristics in a Round Cohesive Gel Silicone Breast Implant: Retrospective Analysis of 3458 Breast Implants by a Single Surgeon. Aesth Plast Surg. 2011;35:125–128.

